My Website

小徐同学参考了谢益辉大神的blog,也尝试记录自己的生活

高级计量Stata--第十二章多值选择模型

Xwyturbo / 2022-11-15


以下内容全部搬运自陈强老师的《高级计量经济学及Stata应用》

12.1多项logit与多项Probit。

以数据集nomocc2.dta为例,进行多项logit与多项probit估计。首先加载数据,进行描述性统计分析。

## 加载数据
use "D:\cnusisters\cyl\20221108\nomocc2.dta"
(1982 General Social Survey)

## 查看数据特征
. sum

    Variable |        Obs        Mean    Std. Dev.       Min        Max
-------------+---------------------------------------------------------
         occ |        337    3.397626    1.367913          1          5
       white |        337    .9169139    .2764227          0          1
          ed |        337    13.09496    2.946427          3         20
       exper |        337    20.50148    13.95936          2         66


## 查看前六行观测值
. list in 1/6

     +-----------------------------+
     |    occ   white   ed   exper |
     |-----------------------------|
  1. | Menial       1   11       3 |
  2. | Menial       1   12      14 |
  3. | Menial       1   12      44 |
  4. | Menial       1   12      18 |
  5. | Menial       0   14      24 |
     |-----------------------------|
  6. | Menial       1   13      38 |
     +-----------------------------+

## 列表考察教育年限ed,与职业occ的关系。
###  occ,即occupation职业,包括Menial服务人员,BlueCol蓝领,Craft工匠,WhiteCol白领,Prof专业人士五种。

table occ,contents(N ed mean ed sd ed)

----------------------------------------------
Occupatio |
n         |      N(ed)    mean(ed)      sd(ed)
----------+-----------------------------------
   Menial |         31   11.774194    2.186469
  BlueCol |         69   11.217391    2.571733
    Craft |         84   11.964286    2.119596
 WhiteCol |         41   13.170732    2.096455
     Prof |        112     15.4375    2.608998
----------------------------------------------

构建多项logit模型,并进行豪斯曼检验,Small-Hsiao检验,最后搞个预测

## 构建多项logit模型
 mlogit occ white ed exper, nolog

Multinomial logistic regression                 Number of obs     =        337
                                                LR chi2(12)       =     166.09
                                                Prob > chi2       =     0.0000
Log likelihood = -426.80048                     Pseudo R2         =     0.1629

------------------------------------------------------------------------------
         occ |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
Menial       |
       white |  -1.774306   .7550543    -2.35   0.019    -3.254186   -.2944273
          ed |  -.7788519   .1146293    -6.79   0.000    -1.003521   -.5541826
       exper |  -.0356509    .018037    -1.98   0.048    -.0710028    -.000299
       _cons |   11.51833   1.849356     6.23   0.000     7.893659      15.143
-------------+----------------------------------------------------------------
BlueCol      |
       white |  -.5378027   .7996033    -0.67   0.501    -2.104996    1.029391
          ed |  -.8782767   .1005446    -8.74   0.000     -1.07534   -.6812128
       exper |  -.0309296   .0144086    -2.15   0.032      -.05917   -.0026893
       _cons |   12.25956   1.668144     7.35   0.000     8.990061    15.52907
-------------+----------------------------------------------------------------
Craft        |
       white |  -1.301963    .647416    -2.01   0.044    -2.570875   -.0330509
          ed |  -.6850365   .0892996    -7.67   0.000    -.8600605   -.5100126
       exper |  -.0079671   .0127055    -0.63   0.531    -.0328693    .0169351
       _cons |   10.42698   1.517943     6.87   0.000     7.451864    13.40209
-------------+----------------------------------------------------------------
WhiteCol     |
       white |  -.2029212   .8693072    -0.23   0.815    -1.906732     1.50089
          ed |  -.4256943   .0922192    -4.62   0.000    -.6064407   -.2449479
       exper |   -.001055   .0143582    -0.07   0.941    -.0291967    .0270866
       _cons |   5.279722   1.684006     3.14   0.002     1.979132    8.580313
-------------+----------------------------------------------------------------
Prof         |  (base outcome)
------------------------------------------------------------------------------

. 

## 没有安装sg155,无mlogtest命令,报错。
.  mlogtest ,hausman base
command mlogtest is unrecognized
r(199);

## net安装失败
. net install sg155
file http://www.stata.com/sg155.pkg not found
could not load sg155.pkg from http://www.stata.com/
r(601);
## ssc安装失败
. ssc install sg155
ssc install: "sg155" not found at SSC, type search sg155
(To find all packages at SSC that start with s, type ssc describe s)
r(601);
## 通过search安装
. search sg155

## 安装成功后,检验IIA假定
. mlogtest ,hausman base

Problem determining number of categories.

**** Hausman tests of IIA assumption

 Ho: Odds(Outcome-J vs Outcome-K) are independent of other alternatives.
You used the old syntax of hausman. Click here to learn about the new syntax.

(storing estimation results as _HAUSMAN)

 Omitted |      chi2   df   P>chi2   evidence
---------+------------------------------------
  Menial |     7.324   12    0.835   for Ho    
 BlueCol |     0.320   12    1.000   for Ho    
   Craft |   -14.436   12    1.000   for Ho    
WhiteCol |    -5.541   11    1.000   for Ho    
    Prof |    15.566   12    0.212   for Ho    
----------------------------------------------

## 由于某种原因,无法进行Small-Hsiao检验。
. mlogtest ,smhsiao base

Problem determining number of categories.

**** Small-Hsiao tests of IIA assumption

 Ho: Odds(Outcome-J vs Outcome-K) are independent of other alternatives.
equation 5 not found
r(303);

## 豪斯曼检验,Small-Hsiao检验的小样本性质均不好,只具有参考价值;但是至少不违背IIA假定,如要显示相对分线比率,可输入如下命令。

. mlogit occ white ed exper ,nolog rrr

Multinomial logistic regression                 Number of obs     =        337
                                                LR chi2(12)       =     166.09
                                                Prob > chi2       =     0.0000
Log likelihood = -426.80048                     Pseudo R2         =     0.1629

------------------------------------------------------------------------------
         occ |        RRR   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
Menial       |
       white |    .169601    .128058    -2.35   0.019     .0386123    .7449581
          ed |   .4589326   .0526071    -6.79   0.000     .3665863    .5745417
       exper |   .9649771   .0174053    -1.98   0.048     .9314593     .999701
       _cons |     100542   185937.9     6.23   0.000     2680.234     3771571
-------------+----------------------------------------------------------------
BlueCol      |
       white |   .5840301   .4669924    -0.67   0.501     .1218461     2.79936
          ed |   .4154983   .0417761    -8.74   0.000     .3411816    .5060029
       exper |   .9695438   .0139698    -2.15   0.032     .9425465    .9973143
       _cons |   210989.6   351961.2     7.35   0.000     8022.948     5548662
-------------+----------------------------------------------------------------
Craft        |
       white |   .2719974   .1760954    -2.01   0.044     .0764686    .9674893
          ed |   .5040718   .0450134    -7.67   0.000     .4231365     .600488
       exper |   .9920646   .0126046    -0.63   0.531      .967665    1.017079
       _cons |   33758.18      51243     6.87   0.000     1723.071    661385.6
-------------+----------------------------------------------------------------
WhiteCol     |
       white |   .8163426   .7096525    -0.23   0.815     .1485651    4.485678
          ed |    .653316   .0602483    -4.62   0.000     .5452883    .7827453
       exper |   .9989455   .0143431    -0.07   0.941     .9712254    1.027457
       _cons |   196.3154   330.5962     3.14   0.002     7.236457    5325.773
-------------+----------------------------------------------------------------
Prof         |  (base outcome)
------------------------------------------------------------------------------
Note: _cons estimates baseline relative risk for each outcome.

## 根据模型预测个体选择各种职业的可能性,分别记录为occ1,occ2,occ3,occ4,occ5,并显示前五个观测值。

. predict occ1 occ2 occ3 occ4 occ5
(option pr assumed; predicted probabilities)

. list occ1-occ5 in 1/5

     +------------------------------------------------------+
     |     occ1       occ2       occ3       occ4       occ5 |
     |------------------------------------------------------|
  1. | .1681295   .4128002   .2760952    .085288   .0576871 |
  2. | .1257816   .2945018   .3076293   .1328948   .1391926 |
  3. | .0644456   .1738508   .3616529   .1922331   .2078175 |
  4. | .1161744   .2771936   .3174044   .1409616    .148266 |
  5. | .1691383   .0988214    .410424   .1063373    .215279 |
     +------------------------------------------------------+

## 也可以选择其他职业作为替代方案,比如服务业。
. mlogit occ white ed exper, base(1) nolog

Multinomial logistic regression                 Number of obs     =        337
                                                LR chi2(12)       =     166.09
                                                Prob > chi2       =     0.0000
Log likelihood = -426.80048                     Pseudo R2         =     0.1629

------------------------------------------------------------------------------
         occ |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
Menial       |  (base outcome)
-------------+----------------------------------------------------------------
BlueCol      |
       white |   1.236504   .7244352     1.71   0.088    -.1833631    2.656371
          ed |  -.0994247   .1022812    -0.97   0.331    -.2998922    .1010428
       exper |   .0047212   .0173984     0.27   0.786    -.0293789    .0388214
       _cons |   .7412336    1.51954     0.49   0.626     -2.23701    3.719477
-------------+----------------------------------------------------------------
Craft        |
       white |   .4723436   .6043097     0.78   0.434    -.7120817    1.656769
          ed |   .0938154    .097555     0.96   0.336    -.0973888    .2850197
       exper |   .0276838   .0166737     1.66   0.097     -.004996    .0603636
       _cons |  -1.091353   1.450218    -0.75   0.452    -3.933728    1.751022
-------------+----------------------------------------------------------------
WhiteCol     |
       white |   1.571385   .9027216     1.74   0.082    -.1979166    3.340687
          ed |   .3531577   .1172786     3.01   0.003     .1232959    .5830194
       exper |   .0345959   .0188294     1.84   0.066     -.002309    .0715007
       _cons |  -6.238608   1.899094    -3.29   0.001    -9.960764   -2.516453
-------------+----------------------------------------------------------------
Prof         |
       white |   1.774306   .7550543     2.35   0.019     .2944273    3.254186
          ed |   .7788519   .1146293     6.79   0.000     .5541826    1.003521
       exper |   .0356509    .018037     1.98   0.048      .000299    .0710028
       _cons |  -11.51833   1.849356    -6.23   0.000      -15.143   -7.893659
------------------------------------------------------------------------------

构建多项probit模型,结合多项logit,二者系数虽有不同,但不具备可比性,具有可比性的是两个模型的预测概率,由此计算多项probit模型的各种预测概率,分别记录为occ1p,occ2p,occ3p,occ4p,occ5p

## 构建多项probit模型
. mprobit occ white ed exper ,nolog

Multinomial probit regression                   Number of obs     =        337
                                                Wald chi2(12)     =     105.61
Log likelihood = -429.31856                     Prob > chi2       =     0.0000

------------------------------------------------------------------------------
         occ |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
Menial       |
       white |  -1.144907   .5027501    -2.28   0.023    -2.130279   -.1595352
          ed |  -.5094985   .0698816    -7.29   0.000    -.6464639   -.3725331
       exper |  -.0234636   .0109546    -2.14   0.032    -.0449343   -.0019929
       _cons |    7.46242   1.145854     6.51   0.000     5.216587    9.708253
-------------+----------------------------------------------------------------
BlueCol      |
       white |   -.392222   .5182974    -0.76   0.449    -1.408066    .6236222
          ed |  -.5845723    .063011    -9.28   0.000    -.7080715    -.461073
       exper |  -.0225903     .00984    -2.30   0.022    -.0418764   -.0033042
       _cons |   8.188586   1.069264     7.66   0.000     6.092867    10.28431
-------------+----------------------------------------------------------------
Craft        |
       white |  -.8903573    .457069    -1.95   0.051    -1.786196    .0054814
          ed |  -.4718874   .0579237    -8.15   0.000    -.5854157   -.3583591
       exper |  -.0077824   .0090923    -0.86   0.392     -.025603    .0100382
       _cons |   7.140264   .9896954     7.21   0.000     5.200496    9.080031
-------------+----------------------------------------------------------------
WhiteCol     |
       white |  -.1434167   .5530156    -0.26   0.795    -1.227307    .9404739
          ed |  -.3038566   .0576254    -5.27   0.000    -.4168003   -.1909129
       exper |  -.0039043   .0095574    -0.41   0.683    -.0226365    .0148279
       _cons |    3.76544   1.036649     3.63   0.000     1.733645    5.797234
-------------+----------------------------------------------------------------
Prof         |  (base outcome)
------------------------------------------------------------------------------

## 计算多项probit模型的各种预测概率,分别记录为occ1p,occ2p,occ3p,occ4p,occ5p。
. predict occ1p occ2p occ3p occ4p occ5p
(option pr assumed; predicted probabilities)

## 比较多项logit 与 多项probit 职业预测概率的相关性。
. corr occ1 occ1p
(obs=337)

             |     occ1    occ1p
-------------+------------------
        occ1 |   1.0000
       occ1p |   0.9979   1.0000


. corr occ2 occ2p
(obs=337)

             |     occ2    occ2p
-------------+------------------
        occ2 |   1.0000
       occ2p |   0.9985   1.0000


. corr occ3 occ3p
(obs=337)

             |     occ3    occ3p
-------------+------------------
        occ3 |   1.0000
       occ3p |   0.9935   1.0000


. corr occ4 occ4p
(obs=337)

             |     occ4    occ4p
-------------+------------------
        occ4 |   1.0000
       occ4p |   0.9929   1.0000


. corr occ5 occ5p
(obs=337)

             |     occ5    occ5p
-------------+------------------
        occ5 |   1.0000
       occ5p |   0.9989   1.0000
## 上述结果显示两个模型的预测概率高度一致,相关系数均在0.99以上,也就是说随便那个模型都可以,只是多项probit耗时不好解释,且多项logit可以从几率比角度解释系数估计值,故实践中采用多项logit。

12.2条件logit模型

以travel2.dta为例,进行条件logit模型估计

## 加载数据
. use "D:\cnusisters\cyl\20221108\travel2.dta"
(Greene & Hensher 1997 data on travel mode choice)

## 查看前六行观测值
## 被解释变量choice为虚拟变量,表示选择哪一种方案,如第一行选择了train方案,choice=0,第三行选择了car方案,choice=1。
## 数据只有152个旅行团,相对是个宽表,每个旅行团对应三行数据,但是为了模型分析,转成了长表152*3。
. list id mode train bus time invc choice hinc psize in 1/6 ,sepby(id)

     +----------------------------------------------------------------+
     | id    mode   train   bus   time   invc   choice   hinc   psize |
     |----------------------------------------------------------------|
  1. |  1   Train       1     0    406     31        0     35       1 |
  2. |  1     Bus       0     1    452     25        0     35       1 |
  3. |  1     Car       0     0    180     10        1     35       1 |
     |----------------------------------------------------------------|
  4. |  2   Train       1     0    398     31        0     30       2 |
  5. |  2     Bus       0     1    452     25        0     30       2 |
  6. |  2     Car       0     0    255     11        1     30       2 |
     +----------------------------------------------------------------+

## 查看变量分布特征,
## id指旅行团,但是编码不连续最大值到了210,
## mode指旅行方式(Train、bus、car),虚拟变量train=1,该行对应火车方案;虚拟变量bus=1,对应公交车方案;虚拟变量train=0,bus=0,对应自驾车方案。
## time指旅行时间,单位分钟。
## invc 乘车成本
## hinc 家庭收入
## psize 旅行团人数


. sum

    Variable |        Obs        Mean    Std. Dev.       Min        Max
-------------+---------------------------------------------------------
          id |        456    103.8882    61.03044          1        210
        mode |        456           2    .8173933          1          3
       train |        456    .3333333    .4719223          0          1
         bus |        456    .3333333    .4719223          0          1
         car |        456    .3333333    .4719223          0          1
-------------+---------------------------------------------------------
        time |        456    632.1096    270.2547        180       1440
        invc |        456    33.95175      21.795          2        109
      choice |        456    .3333333    .4719223          0          1
        ttme |        456    25.24781    21.15744          0         99
        invt |        456    606.8618    265.8235        180       1440
-------------+---------------------------------------------------------
          gc |        456    113.4912     53.7725         30        269
        hinc |        456    31.80921    19.25813          2         72
       psize |        456    1.809211    1.069457          1          6


## 进行条件logit模型估计,加上选择项 or 计算风险比率

. clogit choice train bus time invc ,group(id) nolog or

Conditional (fixed-effects) logistic regression

                                                Number of obs     =        456
                                                LR chi2(4)        =     172.06
                                                Prob > chi2       =     0.0000
Log likelihood = -80.961135                     Pseudo R2         =     0.5152

------------------------------------------------------------------------------
      choice | Odds Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
       train |   14.45786   6.551738     5.89   0.000      5.94802    35.14272
         bus |   4.359401   1.746879     3.67   0.000     1.987639    9.561286
        time |   .9810368   .0024044    -7.81   0.000     .9763356    .9857607
        invc |   .9529758   .0113896    -4.03   0.000      .930912    .9755624
------------------------------------------------------------------------------

## 计算条件logit的预测概率
. predict prob
(option pc1 assumed; probability of success given one success within group)
## 展示第一个旅行社团的预测结果,结果显示第一个旅行团选择car的概率为0.93,实际选择了car方案。
. list id mode prob choice time invc in 1/3

     +----------------------------------------------+
     | id    mode       prob   choice   time   invc |
     |----------------------------------------------|
  1. |  1   Train   .0642477        0    406     31 |
  2. |  1     Bus   .0107205        0    452     25 |
  3. |  1     Car   .9250318        1    180     10 |
     +----------------------------------------------+

## 使用asclogit估计条件logit模型
. asclogit  choice time invc ,case(id) alternatives(mode) base(3) nolog

Alternative-specific conditional logit         Number of obs      =        456
Case variable: id                              Number of cases    =        152

Alternative variable: mode                     Alts per case: min =          3
                                                              avg =        3.0
                                                              max =          3

                                                  Wald chi2(2)    =      70.53
Log likelihood = -80.961135                       Prob > chi2     =     0.0000

------------------------------------------------------------------------------
      choice | Odds Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
mode         |
        time |   .9810368   .0024044    -7.81   0.000     .9763356    .9857607
        invc |   .9529758   .0113896    -4.03   0.000      .930912    .9755624
-------------+----------------------------------------------------------------
Train        |
       _cons |   14.45786   6.551738     5.89   0.000      5.94802    35.14272
-------------+----------------------------------------------------------------
Bus          |
       _cons |   4.359401   1.746879     3.67   0.000     1.987639    9.561286
-------------+----------------------------------------------------------------
Car          |  (base alternative)
------------------------------------------------------------------------------
Note: _cons estimates baseline odds for each outcome.


## 通过asclogit,将个体变量,以casevars(hinc psize)形式添加进入方程。
. asclogit  choice time invc ,case(id) alternatives(mode) base(3) casevars(hinc psize) nolog

Alternative-specific conditional logit         Number of obs      =        456
Case variable: id                              Number of cases    =        152

Alternative variable: mode                     Alts per case: min =          3
                                                              avg =        3.0
                                                              max =          3

                                                  Wald chi2(6)    =      69.09
Log likelihood = -77.504846                       Prob > chi2     =     0.0000

------------------------------------------------------------------------------
      choice |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
mode         |
        time |  -.0185035   .0025035    -7.39   0.000    -.0234103   -.0135966
        invc |  -.0402791   .0134851    -2.99   0.003    -.0667095   -.0138488
-------------+----------------------------------------------------------------
Train        |
        hinc |  -.0342841   .0158471    -2.16   0.031    -.0653438   -.0032243
       psize |  -.0038421   .3098075    -0.01   0.990    -.6110537    .6033695
       _cons |   3.499641   .7579665     4.62   0.000     2.014054    4.985228
-------------+----------------------------------------------------------------
Bus          |
        hinc |  -.0080174   .0200322    -0.40   0.689    -.0472798     .031245
       psize |  -.5141037   .4007015    -1.28   0.199    -1.299464    .2712569
       _cons |   2.486465   .8803649     2.82   0.005     .7609815    4.211949
-------------+----------------------------------------------------------------
Car          |  (base alternative)
------------------------------------------------------------------------------

## 通过asclogit,估计一个只含常数项的方程。
. asclogit  choice ,case(id) alternatives(mode) base(3) nolog

Alternative-specific conditional logit         Number of obs      =        456
Case variable: id                              Number of cases    =        152

Alternative variable: mode                     Alts per case: min =          3
                                                              avg =        3.0
                                                              max =          3

                                                  Wald chi2(0)    =          .
Log likelihood = -160.00172                       Prob > chi2     =          .

------------------------------------------------------------------------------
      choice |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
Train        |
       _cons |   .0655973   .1811689     0.36   0.717    -.2894872    .4206818
-------------+----------------------------------------------------------------
Bus          |
       _cons |    -.67634   .2242376    -3.02   0.003    -1.115838   -.2368425
-------------+----------------------------------------------------------------
Car          |  (base alternative)
------------------------------------------------------------------------------

## 通过两个方程的对数似然函数,计算准R方。
. dis(160.00172-77.504846)/160.00172
.51559992

12.3混合logit模型

以travel2.dta为例,进行混合logit模型,略。

12.4嵌套logit模型

进行嵌套logit模型的命令语法

nlogit y x1 x2||level_equation||level2_equation,base(#) case(varname) nolog notree

其中x1 x2,是随方案而变的随机变量。

||表示分隔符。

level1_equation用来指定系数只随着树干(level1),不随随树枝(level2)而变的解释变量。

level2_equation用来指定系数既随着树干(level1),又随树枝(level2)而变的解释变量。

case(varname)用来指定个体。

base(#)指定参照方案。

## 定义树形结构,| 表示的是或的意思。
.  nlogitgen type =mode(public:Train | Bus , private:Car)
new variable type is generated with 2 groups
label list lb_type
lb_type:
           1 public
           2 private


## 显示树形结构
. nlogittree mode type

tree structure specified for the nested logit model

 type     N      mode   N 
---------------------------
 public  304 --- Train 152
              +- Bus   152
 private 152 --- Car   152
---------------------------
                total  456

N = number of observations at each level

## 通过前六行观测值,观察type。
. list id mode train bus time invc choice hinc type in 1/6, sepby(id)

     +------------------------------------------------------------------+
     | id    mode   train   bus   time   invc   choice   hinc      type |
     |------------------------------------------------------------------|
  1. |  1   Train       1     0    406     31        0     35    public |
  2. |  1     Bus       0     1    452     25        0     35    public |
  3. |  1     Car       0     0    180     10        1     35   private |
     |------------------------------------------------------------------|
  4. |  2   Train       1     0    398     31        0     30    public |
  5. |  2     Bus       0     1    452     25        0     30    public |
  6. |  2     Car       0     0    255     11        1     30   private |
     +------------------------------------------------------------------+


## 嵌套logit模型估计
## nlogit y x1 x2||level1equation||level2_equation,base(#) case(varname) nolog notree##
#######################################################################################
. nlogit choice time invc || type:psize,base(private)||mode:hinc,base(3) case(id) nolog notree

note: branch 2 of level 1 is degenerate and the associated dissimilarity parameter ([private_tau]_cons) is not
       defined; see help nlogit for details

RUM-consistent nested logit regression         Number of obs      =        456
Case variable: id                              Number of cases    =        152

Alternative variable: mode                     Alts per case: min =          3
                                                              avg =        3.0
                                                              max =          3

                                                  Wald chi2(5)    =      40.43
Log likelihood = -71.596852                       Prob > chi2     =     0.0000

------------------------------------------------------------------------------
      choice |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
mode         |
        time |  -.0131088   .0025114    -5.22   0.000    -.0180311   -.0081865
        invc |  -.0239481   .0092615    -2.59   0.010    -.0421003   -.0057959
------------------------------------------------------------------------------
type equations
------------------------------------------------------------------------------
public       |
       psize |  -.2313238    .247549    -0.93   0.350     -.716511    .2538633
-------------+----------------------------------------------------------------
private      |
       psize |          0  (base)
------------------------------------------------------------------------------
mode equations
------------------------------------------------------------------------------
Train        |
        hinc |   -.035748   .0138416    -2.58   0.010     -.062877    -.008619
       _cons |   3.301226   .6493563     5.08   0.000     2.028511    4.573941
-------------+----------------------------------------------------------------
Bus          |
        hinc |  -.0192798   .0150931    -1.28   0.201    -.0488616     .010302
       _cons |   2.431362   .6584554     3.69   0.000     1.140813    3.721911
-------------+----------------------------------------------------------------
Car          |
        hinc |          0  (base)
       _cons |          0  (base)
------------------------------------------------------------------------------
dissimilarity parameters
------------------------------------------------------------------------------
type         |
 /public_tau |   .3270861   .1057724                      .1197761    .5343961
/private_tau |          1   329241.4                     -645300.4    645302.4
------------------------------------------------------------------------------
LR test for IIA (tau=1): chi2(2) = 13.95                  Prob > chi2 = 0.0009